NEW FUNCTION

Function Expression :

\[f(x)=2x-1+\frac{1}{e^x-1} \]

Domain

\[\left]-\infty, 0\right[ \cup \left]0, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = -\infty \]
\[\lim_{x \overset{<}{\rightarrow0} }f(x) = -\infty \]
\[\lim_{x \overset{>}{\rightarrow0} }f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=2 - \frac{e^{x}}{\left(e^{x} - 1\right)^{2}} \]
\[f^{\,\prime}(x)=2 - \frac{1}{4 \sinh^{2}{\left(\frac{x}{2} \right)}} \]
\[f^{\,\prime}(x)=\frac{8 \sinh^{2}{\left(\frac{x}{2} \right)} - 1}{4 \sinh^{2}{\left(\frac{x}{2} \right)}} \]

Integral

\[F(x) = x^{2} - 2 x + \log{\left(e^{x} - 1 \right)} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0044 seconds