NEW FUNCTION

Function Expression :

\[f(x)=ln(\frac{1+x}{x+2} ) \]

Domain

\[\left]-\infty, -2\right[ \cup \left]-1, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = 0 \]
\[\lim_{x \overset{<}{\rightarrow-2} }f(x) = +\infty \]
\[\lim_{x \overset{>}{\rightarrow-1} }f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = 0 \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{\left(x + 2\right) \left(- \frac{x + 1}{\left(x + 2\right)^{2}} + \frac{1}{x + 2}\right)}{x + 1} \]
\[f^{\,\prime}(x)=\frac{1}{\left(x + 1\right) \left(x + 2\right)} \]
\[ \]

Integral

\[F(x) = x \log{\left(\frac{x}{x + 2} + \frac{1}{x + 2} \right)} - \log{\left(x + 2 \right)} + \log{\left(\frac{x}{x + 2} + \frac{1}{x + 2} \right)} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0054 seconds