NEW FUNCTION

Function Expression :

\[f(x)=ln(x^2+4 )-x \]

Domain

\[\left]-\infty, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = -\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{2 x}{x^{2} + 4} - 1 \]
\[f^{\,\prime}(x)=\frac{- x^{2} + 2 x - 4}{x^{2} + 4} \]
\[ \]

Integral

\[F(x) = - \frac{x^{2}}{2} + x \log{\left(x^{2} + 4 \right)} - 2 x + 4 \operatorname{atan}{\left(\frac{x}{2} \right)} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0150 seconds