NEW FUNCTION

Function Expression :

\[f(x)=\frac{x^4-3x^2}{(x^2-1 )^2} \]

Domain

\[\left]-\infty, -1\right[ \cup \left]-1, 1\right[ \cup \left]1, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = 1 \]
\[\lim_{x \overset{<}{\rightarrow-1} }f(x) = -\infty \]
\[\lim_{x \overset{>}{\rightarrow-1} }f(x) = -\infty \]
\[\lim_{x \overset{<}{\rightarrow1} }f(x) = -\infty \]
\[\lim_{x \overset{>}{\rightarrow1} }f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = 1 \]
\[ \]

Derivate

\[f^{\,\prime}(x)=- \frac{4 x \left(x^{4} - 3 x^{2}\right)}{\left(x^{2} - 1\right)^{3}} + \frac{4 x^{3} - 6 x}{\left(x^{2} - 1\right)^{2}} \]
\[f^{\,\prime}(x)=\frac{2 x \left(x^{2} + 3\right)}{x^{6} - 3 x^{4} + 3 x^{2} - 1} \]
\[ \]

Integral

\[F(x) = x + \frac{x}{x^{2} - 1} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0106 seconds