NEW FUNCTION

Function Expression :

\[f(x)=\frac{e^x}{e^{x+1}}-ln(e^x+1 ) \]

Domain

\[\left]-\infty, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = e^{-1} \]
\[\lim_{x \rightarrow+\infty}f(x) = -\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=- e^{x} e^{- 2 x - 2} e^{x + 1} + e^{x} e^{- x - 1} - \frac{e^{x}}{e^{x} + 1} \]
\[f^{\,\prime}(x)=- \frac{e^{x}}{e^{x} + 1} \]
\[ \]

Integral

\[F(x) = - x \log{\left(e^{x} + 1 \right)} + \frac{\int \frac{e^{x}}{e^{x} + 1}\, dx + \int \frac{e x e^{x}}{e^{x} + 1}\, dx + \int \frac{1}{e^{x} + 1}\, dx}{e} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0111 seconds