NEW FUNCTION

Function Expression :

\[f(x)=\frac{\sqrt{x^2+1}-1}{x} \]

Domain

\[\left]-\infty, 0\right[ \cup \left]0, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = -1 \]
\[\lim_{x \overset{<}{\rightarrow0} }f(x) = 0 \]
\[\lim_{x \overset{>}{\rightarrow0} }f(x) = 0 \]
\[\lim_{x \rightarrow+\infty}f(x) = 1 \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{1}{\sqrt{x^{2} + 1}} - \frac{\sqrt{x^{2} + 1} - 1}{x^{2}} \]
\[f^{\,\prime}(x)=\frac{1}{x^{2}} - \frac{1}{x^{2} \sqrt{x^{2} + 1}} \]
\[f^{\,\prime}(x)=\frac{\sqrt{x^{2} + 1} - 1}{x^{2} \sqrt{x^{2} + 1}} \]

Integral

\[F(x) = \sqrt{x^{2} + 1} - \log{\left(\sqrt{x^{2} + 1} + 1 \right)} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0063 seconds