NEW FUNCTION

Function Expression :

\[f(x)=ln(e^x+2e^{-x} ) \]

Domain

\[\left]-\infty, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{e^{x} - 2 e^{- x}}{e^{x} + 2 e^{- x}} \]
\[f^{\,\prime}(x)=\frac{e^{2 x} - 2}{e^{2 x} + 2} \]
\[ \]

Integral

\[F(x) = x \log{\left(e^{x} + 2 e^{- x} \right)} - \int \left(- \frac{2 x}{e^{2 x} + 2}\right)\, dx - \int \frac{x e^{2 x}}{e^{2 x} + 2}\, dx \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0077 seconds