NEW FUNCTION
Function Expression :
\[f(x)=(x^2+1
)\sqrt{x} \]
Domain
\[\left[0, \infty\right[ \]
Limits
\[\lim_{x \overset{>}{\rightarrow0} }f(x) = 0 \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]
Derivate
\[f^{\,\prime}(x)=2 x^{\frac{3}{2}} + \frac{x^{2} + 1}{2 \sqrt{x}} \]
\[f^{\,\prime}(x)=\frac{5 x^{2} + 1}{2 \sqrt{x}} \]
\[ \]
Integral
\[F(x) = \frac{2 x^{\frac{7}{2}}}{7} + \frac{2 x^{\frac{3}{2}}}{3} \]
Sign Table
Variation Table
Plot
Elapsed Time: 0.0054 seconds