NEW FUNCTION

Function Expression :

\[f(x)=(x^2+1 )\sqrt{x} \]

Domain

\[\left[0, \infty\right[ \]

Limits

\[\lim_{x \overset{>}{\rightarrow0} }f(x) = 0 \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=2 x^{\frac{3}{2}} + \frac{x^{2} + 1}{2 \sqrt{x}} \]
\[f^{\,\prime}(x)=\frac{5 x^{2} + 1}{2 \sqrt{x}} \]
\[ \]

Integral

\[F(x) = \frac{2 x^{\frac{7}{2}}}{7} + \frac{2 x^{\frac{3}{2}}}{3} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0054 seconds