NEW FUNCTION

Function Expression :

\[f(x)=e^x-ln(e^x-1 ) \]

Domain

\[\left]0, \infty\right[ \]

Limits

\[\lim_{x \overset{>}{\rightarrow0} }f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=e^{x} - \frac{e^{x}}{e^{x} - 1} \]
\[f^{\,\prime}(x)=\frac{\left(e^{x} - 2\right) e^{x}}{e^{x} - 1} \]
\[ \]

Integral

\[F(x) = - x \log{\left(e^{x} - 1 \right)} + \int \frac{\left(x + e^{x} - 1\right) e^{x}}{e^{x} - 1}\, dx \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0058 seconds