NEW FUNCTION

Function Expression :

\[f(x)=\frac{e^x}{e^x-1}ln(e^x-1 ) \]

Domain

\[\left]0, \infty\right[ \]

Limits

\[\lim_{x \overset{>}{\rightarrow0} }f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{e^{x} \log{\left(e^{x} - 1 \right)}}{e^{x} - 1} - \frac{e^{2 x} \log{\left(e^{x} - 1 \right)}}{\left(e^{x} - 1\right)^{2}} + \frac{e^{2 x}}{\left(e^{x} - 1\right)^{2}} \]
\[f^{\,\prime}(x)=\frac{\left(e^{x} - \log{\left(e^{x} - 1 \right)}\right) e^{x}}{e^{2 x} - 2 e^{x} + 1} \]
\[ \]

Integral

\[F(x) = \frac{\log{\left(e^{x} - 1 \right)}^{2}}{2} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0011 seconds