NEW FUNCTION

Function Expression :

\[f(x)=x-e+ln(1+2e^{-2(x-e )} ) \]

Domain

\[\left]-\infty, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=1 - \frac{4 e^{- 2 x + 2 e}}{1 + 2 e^{\left(-1\right) 2 \left(x - e\right)}} \]
\[f^{\,\prime}(x)=\frac{e^{2 x} - 2 e^{2 e}}{e^{2 x} + 2 e^{2 e}} \]
\[ \]

Integral

\[F(x) = x \log{\left(2 e^{- 2 x + 2 e} + 1 \right)} + \int \frac{x e^{2 x} + 6 x e^{2 e} - e e^{2 x} - 2 e e^{2 e}}{e^{2 x} + 2 e^{2 e}}\, dx \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0057 seconds