NEW FUNCTION

Function Expression :

\[f(x)=x-1-2\sqrt{x-1} \]

Domain

\[\left[1, \infty\right[ \]

Limits

\[\lim_{x \overset{>}{\rightarrow1} }f(x) = 0 \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=1 - \frac{1}{\sqrt{x - 1}} \]
\[f^{\,\prime}(x)=1 - \frac{1}{\sqrt{x - 1}} \]
\[f^{\,\prime}(x)=\frac{\sqrt{x - 1} - 1}{\sqrt{x - 1}} \]

Integral

\[F(x) = \frac{x^{2}}{2} - x - \frac{4 \left(x - 1\right)^{\frac{3}{2}}}{3} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0031 seconds