NEW FUNCTION
Function Expression :
\[f(x)=x-1-2\sqrt{x-1} \]
Domain
\[\left[1, \infty\right[ \]
Limits
\[\lim_{x \overset{>}{\rightarrow1} }f(x) = 0 \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]
Derivate
\[f^{\,\prime}(x)=1 - \frac{1}{\sqrt{x - 1}} \]
\[f^{\,\prime}(x)=1 - \frac{1}{\sqrt{x - 1}} \]
\[f^{\,\prime}(x)=\frac{\sqrt{x - 1} - 1}{\sqrt{x - 1}} \]
Integral
\[F(x) = \frac{x^{2}}{2} - x - \frac{4 \left(x - 1\right)^{\frac{3}{2}}}{3} \]
Sign Table
Variation Table
Plot
Elapsed Time: 0.0031 seconds