NEW FUNCTION

Function Expression :

\[f(x)=\frac{1}{2}x-\frac{1}{2}(x+1 )e^{-2x} \]

Domain

\[]-\infty ;+\infty [ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=- 2 \left(- \frac{x}{2} - \frac{1}{2}\right) e^{- 2 x} + \frac{1}{2} - \frac{e^{- 2 x}}{2} \]
\[f^{\,\prime}(x)=\frac{\left(2 x + e^{2 x} + 1\right) e^{- 2 x}}{2} \]
\[ \]

Integral

\[F(x) = \frac{x^{2}}{4} + \frac{\left(2 x + 3\right) e^{- 2 x}}{8} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0053 seconds