NEW FUNCTION

Function Expression :

\[f(x)=\sqrt{2x^{2-1}} \]

Domain

\[\left[0, \infty\right[ \]

Limits

\[\lim_{x \overset{>}{\rightarrow0} }f(x) = 0 \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{x^{-1 + 2} \sqrt{2} \sqrt{x^{-1 + 2}} \left(-1 + 2\right)}{2 x^{2}} \]
\[f^{\,\prime}(x)=\frac{\sqrt{2}}{2 \sqrt{x}} \]
\[ \]

Integral

\[F(x) = \frac{2 \sqrt{2} \left(x^{-1 + 2}\right)^{\frac{3}{2}}}{3} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0046 seconds