NEW FUNCTION
Function Expression :
\[f(x)=cos^3(x
)-\frac{3}{2}cos(x
) \]
Domain
\[]-\infty ;+\infty [ \]
Limits
\[\lim_{x \rightarrow-\infty}f(x) = \left\langle - \frac{5}{2}, \frac{5}{2}\right\rangle \]
\[\lim_{x \rightarrow+\infty}f(x) = \left\langle - \frac{5}{2}, \frac{5}{2}\right\rangle \]
\[ \]
Derivate
\[f^{\,\prime}(x)=- 3 \sin{\left(x \right)} \cos^{2}{\left(x \right)} + \frac{3 \sin{\left(x \right)}}{2} \]
\[f^{\,\prime}(x)=- \frac{3 \sin{\left(x \right)} \cos{\left(2 x \right)}}{2} \]
\[ \]
Integral
\[F(x) = - \frac{\sin^{3}{\left(x \right)}}{3} - \frac{\sin{\left(x \right)}}{2} \]
Sign Table
Variation Table
Plot
Elapsed Time: 0.0037 seconds