NEW FUNCTION

Function Expression :

\[f(x)=cos^3(x )-\frac{3}{2}cos(x ) \]

Domain

\[]-\infty ;+\infty [ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = \left\langle - \frac{5}{2}, \frac{5}{2}\right\rangle \]
\[\lim_{x \rightarrow+\infty}f(x) = \left\langle - \frac{5}{2}, \frac{5}{2}\right\rangle \]
\[ \]

Derivate

\[f^{\,\prime}(x)=- 3 \sin{\left(x \right)} \cos^{2}{\left(x \right)} + \frac{3 \sin{\left(x \right)}}{2} \]
\[f^{\,\prime}(x)=- \frac{3 \sin{\left(x \right)} \cos{\left(2 x \right)}}{2} \]
\[ \]

Integral

\[F(x) = - \frac{\sin^{3}{\left(x \right)}}{3} - \frac{\sin{\left(x \right)}}{2} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0037 seconds