NEW FUNCTION

Function Expression :

\[f(x)=\frac{2x}{\sqrt{1+x^2}} \]

Domain

\[\left]-\infty, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = -2 \]
\[\lim_{x \rightarrow+\infty}f(x) = 2 \]
\[ \]

Derivate

\[f^{\,\prime}(x)=- \frac{2 x^{2}}{\left(x^{2} + 1\right)^{\frac{3}{2}}} + \frac{2}{\sqrt{x^{2} + 1}} \]
\[f^{\,\prime}(x)=\frac{2}{\left(x^{2} + 1\right)^{\frac{3}{2}}} \]
\[ \]

Integral

\[F(x) = 2 \sqrt{x^{2} + 1} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0071 seconds