NEW FUNCTION

Function Expression :

\[f(x)=(ln x-1 )(e^{2ln x}-1 ) \]

Domain

\[\left]0, \infty\right[ \]

Limits

\[\lim_{x \overset{>}{\rightarrow0} }f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=2 x \left(\log{\left(x \right)} - 1\right) + \frac{x^{2} - 1}{x} \]
\[f^{\,\prime}(x)=2 x \log{\left(x \right)} - x - \frac{1}{x} \]
\[f^{\,\prime}(x)=\frac{2 x^{2} \log{\left(x \right)} - x^{2} - 1}{x} \]

Integral

\[F(x) = \frac{x^{3} \log{\left(x \right)}}{3} - \frac{4 x^{3}}{9} - x \log{\left(x \right)} + 2 x \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0046 seconds