NEW FUNCTION

Function Expression :

\[f(x)=\frac{e^{-x}-1}{-x} \]

Domain

\[\left]-\infty, 0\right[ \cup \left]0, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = +\infty \]
\[\lim_{x \overset{<}{\rightarrow0} }f(x) = 1 \]
\[\lim_{x \overset{>}{\rightarrow0} }f(x) = 1 \]
\[\lim_{x \rightarrow+\infty}f(x) = 0 \]
\[ \]

Derivate

\[f^{\,\prime}(x)=- - \frac{1}{x} e^{- x} + \frac{-1 + e^{- x}}{x^{2}} \]
\[f^{\,\prime}(x)=\frac{\left(x - e^{x} + 1\right) e^{- x}}{x^{2}} \]
\[ \]

Integral

\[F(x) = \log{\left(- x \right)} - \operatorname{Ei}{\left(- x \right)} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0021 seconds