NEW FUNCTION
Function Expression :
\[f(x)=\frac{(5x+3
)}{(x+3
)} \]
Domain
\[\left]-\infty, -3\right[ \cup \left]-3, \infty\right[ \]
Limits
\[\lim_{x \rightarrow-\infty}f(x) = 5 \]
\[\lim_{x \overset{<}{\rightarrow-3} }f(x) = +\infty \]
\[\lim_{x \overset{>}{\rightarrow-3} }f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = 5 \]
\[ \]
Derivate
\[f^{\,\prime}(x)=\frac{5}{x + 3} - \frac{5 x + 3}{\left(x + 3\right)^{2}} \]
\[f^{\,\prime}(x)=\frac{12}{\left(x + 3\right)^{2}} \]
\[ \]
Integral
\[F(x) = 5 x - 12 \log{\left(x + 3 \right)} \]
Sign Table
Variation Table
Plot
Elapsed Time: 0.0039 seconds