NEW FUNCTION

Function Expression :

\[f(x)=\frac{(5x+3 )}{(x+3 )} \]

Domain

\[\left]-\infty, -3\right[ \cup \left]-3, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = 5 \]
\[\lim_{x \overset{<}{\rightarrow-3} }f(x) = +\infty \]
\[\lim_{x \overset{>}{\rightarrow-3} }f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = 5 \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{5}{x + 3} - \frac{5 x + 3}{\left(x + 3\right)^{2}} \]
\[f^{\,\prime}(x)=\frac{12}{\left(x + 3\right)^{2}} \]
\[ \]

Integral

\[F(x) = 5 x - 12 \log{\left(x + 3 \right)} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0039 seconds