NEW FUNCTION

Function Expression :

\[f(x)=\frac{(6x+18 )}{(x+5 )} \]

Domain

\[\left]-\infty, -5\right[ \cup \left]-5, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = 6 \]
\[\lim_{x \overset{<}{\rightarrow-5} }f(x) = +\infty \]
\[\lim_{x \overset{>}{\rightarrow-5} }f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = 6 \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{6}{x + 5} - \frac{6 x + 18}{\left(x + 5\right)^{2}} \]
\[f^{\,\prime}(x)=\frac{12}{\left(x + 5\right)^{2}} \]
\[ \]

Integral

\[F(x) = 6 x - 12 \log{\left(x + 5 \right)} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0047 seconds