NEW FUNCTION

Function Expression :

\[f(x)=x+\sqrt{x^2+2} \]

Domain

\[\left]-\infty, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = 0 \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{x}{\sqrt{x^{2} + 2}} + 1 \]
\[f^{\,\prime}(x)=\frac{x}{\sqrt{x^{2} + 2}} + 1 \]
\[f^{\,\prime}(x)=\frac{x + \sqrt{x^{2} + 2}}{\sqrt{x^{2} + 2}} \]

Integral

\[F(x) = \frac{x^{2}}{2} + \frac{x \sqrt{x^{2} + 2}}{2} + \operatorname{asinh}{\left(\frac{\sqrt{2} x}{2} \right)} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0049 seconds