NEW FUNCTION

Function Expression :

\[f(x)=\frac{x^2+3x+6}{x+2} \]

Domain

\[\left]-\infty, -2\right[ \cup \left]-2, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = -\infty \]
\[\lim_{x \overset{<}{\rightarrow-2} }f(x) = -\infty \]
\[\lim_{x \overset{>}{\rightarrow-2} }f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{2 x + 3}{x + 2} - \frac{x^{2} + 3 x + 6}{\left(x + 2\right)^{2}} \]
\[f^{\,\prime}(x)=\frac{x \left(x + 4\right)}{x^{2} + 4 x + 4} \]
\[ \]

Integral

\[F(x) = \frac{x^{2}}{2} + x + 4 \log{\left(x + 2 \right)} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0075 seconds