NEW FUNCTION
Function Expression :
\[f(x)=\frac{e}{e^{(-x
)}+1} \]
Domain
\[]-\infty ;+\infty [ \]
Limits
\[\lim_{x \rightarrow-\infty}f(x) = 0 \]
\[\lim_{x \rightarrow+\infty}f(x) = e \]
\[ \]
Derivate
\[f^{\,\prime}(x)=\frac{e e^{- x}}{\left(1 + e^{- x}\right)^{2}} \]
\[f^{\,\prime}(x)=\frac{e^{x + 1}}{\left(e^{x} + 1\right)^{2}} \]
\[ \]
Integral
\[F(x) = e x + e \log{\left(1 + e^{- x} \right)} \]
Sign Table
Variation Table
Plot
Elapsed Time: 0.0033 seconds