NEW FUNCTION

Function Expression :

\[f(x)=\frac{e}{e^{(-x )}+1} \]

Domain

\[]-\infty ;+\infty [ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = 0 \]
\[\lim_{x \rightarrow+\infty}f(x) = e \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{e e^{- x}}{\left(1 + e^{- x}\right)^{2}} \]
\[f^{\,\prime}(x)=\frac{e^{x + 1}}{\left(e^{x} + 1\right)^{2}} \]
\[ \]

Integral

\[F(x) = e x + e \log{\left(1 + e^{- x} \right)} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0033 seconds