NEW FUNCTION

Function Expression :

\[f(x)=\frac{4x-5}{4x-4} \]

Domain

\[\left]-\infty, 1\right[ \cup \left]1, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = 1 \]
\[\lim_{x \overset{<}{\rightarrow1} }f(x) = +\infty \]
\[\lim_{x \overset{>}{\rightarrow1} }f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = 1 \]
\[ \]

Derivate

\[f^{\,\prime}(x)=- \frac{4 \cdot \left(4 x - 5\right)}{\left(4 x - 4\right)^{2}} + \frac{4}{4 x - 4} \]
\[f^{\,\prime}(x)=\frac{1}{4 \left(x - 1\right)^{2}} \]
\[ \]

Integral

\[F(x) = x - \frac{\log{\left(x - 1 \right)}}{4} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0054 seconds