NEW FUNCTION

Function Expression :

\[f(x)=(xln x )^2 \]

Domain

\[\left]0, \infty\right[ \]

Limits

\[\lim_{x \overset{>}{\rightarrow0} }f(x) = 0 \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{x^{2} \log{\left(x \right)}^{2} \cdot \left(2 \log{\left(x \right)} + 2\right)}{x \log{\left(x \right)}} \]
\[f^{\,\prime}(x)=2 x \left(\log{\left(x \right)} + 1\right) \log{\left(x \right)} \]
\[ \]

Integral

\[F(x) = \frac{x^{3} \log{\left(x \right)}^{2}}{3} - \frac{2 x^{3} \log{\left(x \right)}}{9} + \frac{2 x^{3}}{27} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0112 seconds