NEW FUNCTION

Function Expression :

\[f(x)=3x^3+2ln(x^2-4x ) \]

Domain

\[\left]-\infty, 0\right[ \cup \left]4, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = -\infty \]
\[\lim_{x \overset{<}{\rightarrow0} }f(x) = -\infty \]
\[\lim_{x \overset{>}{\rightarrow4} }f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=9 x^{2} + \frac{2 \cdot \left(2 x - 4\right)}{x^{2} - 4 x} \]
\[f^{\,\prime}(x)=\frac{9 x^{3} \left(x - 4\right) + 4 x - 8}{x \left(x - 4\right)} \]
\[ \]

Integral

\[F(x) = \frac{3 x^{4}}{4} + 2 x \log{\left(x^{2} - 4 x \right)} - 4 x - 8 \log{\left(x - 4 \right)} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0060 seconds