NEW FUNCTION

Function Expression :

\[f(x)=2x-1+\frac{1}{e^x-0} \]

Domain

\[]-\infty ;+\infty [ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=2 - \frac{e^{x}}{\left(e^{x} + 0\right)^{2}} \]
\[f^{\,\prime}(x)=2 - e^{- x} \]
\[f^{\,\prime}(x)=\left(2 e^{x} - 1\right) e^{- x} \]

Integral

\[F(x) = x^{2} - x - e^{- x} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0048 seconds