NEW FUNCTION
Function Expression :
\[f(x)=2^{(x^2-2x
)} \]
Domain
\[]-\infty ;+\infty [ \]
Limits
\[\lim_{x \rightarrow-\infty}f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]
Derivate
\[f^{\,\prime}(x)=2^{x^{2} - 2 x} \left(2 x - 2\right) \log{\left(2 \right)} \]
\[f^{\,\prime}(x)=2^{x \left(x - 2\right)} \left(x - 1\right) \log{\left(4 \right)} \]
\[ \]
Integral
\[F(x) = \int 2^{x^{2} - 2 x}\, dx \]
Sign Table
Variation Table
Plot
Elapsed Time: 0.0040 seconds