NEW FUNCTION
Function Expression :
\[f(x)=\frac{2-x}{2x+1} \]
Domain
\[\left]-\infty, - \frac{1}{2}\right[ \cup \left]- \frac{1}{2}, \infty\right[ \]
Limits
\[\lim_{x \rightarrow-\infty}f(x) = - \frac{1}{2} \]
\[\lim_{x \overset{<}{\rightarrow- \frac{1}{2}} }f(x) = -\infty \]
\[\lim_{x \overset{>}{\rightarrow- \frac{1}{2}} }f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = - \frac{1}{2} \]
\[ \]
Derivate
\[f^{\,\prime}(x)=- \frac{2 \cdot \left(2 - x\right)}{\left(2 x + 1\right)^{2}} - \frac{1}{2 x + 1} \]
\[f^{\,\prime}(x)=- \frac{5}{\left(2 x + 1\right)^{2}} \]
\[ \]
Integral
\[F(x) = - \frac{x}{2} + \frac{5 \log{\left(2 x + 1 \right)}}{4} \]
Sign Table
Variation Table
Plot
Elapsed Time: 0.0034 seconds