NEW FUNCTION

Function Expression :

\[f(x)=\frac{1+ln(1+x )}{x+1} \]

Domain

\[\left]-1, \infty\right[ \]

Limits

\[\lim_{x \overset{>}{\rightarrow-1} }f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = 0 \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{1}{\left(x + 1\right) \left(x + 1\right)} - \frac{\log{\left(x + 1 \right)} + 1}{\left(x + 1\right)^{2}} \]
\[f^{\,\prime}(x)=- \frac{\log{\left(x + 1 \right)}}{\left(x + 1\right)^{2}} \]
\[ \]

Integral

\[F(x) = \frac{\left(\log{\left(x + 1 \right)} + 1\right)^{2}}{2} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0056 seconds