NEW FUNCTION

Function Expression :

\[f(x)=\frac{e^x}{(x^2-1 )} \]

Domain

\[\left]-\infty, -1\right[ \cup \left]-1, 1\right[ \cup \left]1, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = 0 \]
\[\lim_{x \overset{<}{\rightarrow-1} }f(x) = +\infty \]
\[\lim_{x \overset{>}{\rightarrow-1} }f(x) = -\infty \]
\[\lim_{x \overset{<}{\rightarrow1} }f(x) = -\infty \]
\[\lim_{x \overset{>}{\rightarrow1} }f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=- \frac{2 x e^{x}}{\left(x^{2} - 1\right)^{2}} + \frac{e^{x}}{x^{2} - 1} \]
\[f^{\,\prime}(x)=\frac{\left(x^{2} - 2 x - 1\right) e^{x}}{\left(x^{2} - 1\right)^{2}} \]
\[ \]

Integral

\[F(x) = \int \frac{e^{x}}{\left(x - 1\right) \left(x + 1\right)}\, dx \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0044 seconds