NEW FUNCTION
Function Expression :
\[f(x)=x^2-x-1+\frac{-1}{x-1} \]
Domain
\[\left]-\infty, 1\right[ \cup \left]1, \infty\right[ \]
Limits
\[\lim_{x \rightarrow-\infty}f(x) = +\infty \]
\[\lim_{x \overset{<}{\rightarrow1} }f(x) = +\infty \]
\[\lim_{x \overset{>}{\rightarrow1} }f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]
Derivate
\[f^{\,\prime}(x)=2 x - 1 + \frac{1}{\left(x - 1\right)^{2}} \]
\[f^{\,\prime}(x)=2 x - 1 + \frac{1}{\left(x - 1\right)^{2}} \]
\[f^{\,\prime}(x)=\frac{2 x \left(x - 1\right)^{2} - \left(x - 1\right)^{2} + 1}{\left(x - 1\right)^{2}} \]
Integral
\[F(x) = \frac{x^{3}}{3} - \frac{x^{2}}{2} - x - \log{\left(x - 1 \right)} \]
Sign Table
Variation Table
Plot
Elapsed Time: 0.0055 seconds