NEW FUNCTION

Function Expression :

\[f(x)=\sqrt{\frac{3x^2+1}{x-1}} \]

Domain

\[\left]1, \infty\right[ \]

Limits

\[\lim_{x \overset{>}{\rightarrow1} }f(x) = +\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{\sqrt{\frac{3 x^{2} + 1}{x - 1}} \left(x - 1\right) \left(\frac{3 x}{x - 1} - \frac{3 x^{2} + 1}{2 \left(x - 1\right)^{2}}\right)}{3 x^{2} + 1} \]
\[f^{\,\prime}(x)=\frac{\sqrt{\frac{3 x^{2} + 1}{x - 1}} \left(- 3 x^{2} + 6 x \left(x - 1\right) - 1\right)}{2 \left(x - 1\right) \left(3 x^{2} + 1\right)} \]
\[ \]

Integral

\[F(x) = \int \sqrt{\frac{3 x^{2} + 1}{x - 1}}\, dx \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0034 seconds