NEW FUNCTION

Function Expression :

\[f(x)=x^{2-4x-5} \]

Domain

\[]-\infty ;+\infty [ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = \tilde{+\infty} \]
\[\lim_{x \rightarrow+\infty}f(x) = 0 \]
\[ \]

Derivate

\[f^{\,\prime}(x)=x^{\left(-1\right) 4 x - 5 + 2} \left(- 4 \log{\left(x \right)} + \frac{\left(-1\right) 4 x - 5 + 2}{x}\right) \]
\[f^{\,\prime}(x)=x^{- 4 x - 4} \left(- 4 x \log{\left(x \right)} - 4 x - 3\right) \]
\[ \]

Integral

\[F(x) = \int x^{- 4 x - 3}\, dx \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0039 seconds