NEW FUNCTION
Function Expression :
\[f(x)=x^{2-4x-5} \]
Domain
\[]-\infty ;+\infty [ \]
Limits
\[\lim_{x \rightarrow-\infty}f(x) = \tilde{+\infty} \]
\[\lim_{x \rightarrow+\infty}f(x) = 0 \]
\[ \]
Derivate
\[f^{\,\prime}(x)=x^{\left(-1\right) 4 x - 5 + 2} \left(- 4 \log{\left(x \right)} + \frac{\left(-1\right) 4 x - 5 + 2}{x}\right) \]
\[f^{\,\prime}(x)=x^{- 4 x - 4} \left(- 4 x \log{\left(x \right)} - 4 x - 3\right) \]
\[ \]
Integral
\[F(x) = \int x^{- 4 x - 3}\, dx \]
Sign Table
Variation Table
Plot
Elapsed Time: 0.0039 seconds