NEW FUNCTION

Function Expression :

\[f(x)=\frac{x^2-4x+3}{x^2+3x-4} \]

Domain

\[\left]-\infty, -4\right[ \cup \left]-4, 1\right[ \cup \left]1, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = 1 \]
\[\lim_{x \overset{<}{\rightarrow-4} }f(x) = +\infty \]
\[\lim_{x \overset{>}{\rightarrow-4} }f(x) = -\infty \]
\[\lim_{x \overset{<}{\rightarrow1} }f(x) = - \frac{2}{5} \]
\[\lim_{x \overset{>}{\rightarrow1} }f(x) = - \frac{2}{5} \]
\[\lim_{x \rightarrow+\infty}f(x) = 1 \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{\left(- 2 x - 3\right) \left(x^{2} - 4 x + 3\right)}{\left(x^{2} + 3 x - 4\right)^{2}} + \frac{2 x - 4}{x^{2} + 3 x - 4} \]
\[f^{\,\prime}(x)=\frac{7}{x^{2} + 8 x + 16} \]
\[ \]

Integral

\[F(x) = x - 7 \log{\left(x + 4 \right)} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0039 seconds