NEW FUNCTION

Function Expression :

\[f(x)=\sqrt{2x+1}+2\sqrt{4-x} \]

Domain

\[\left[- \frac{1}{2}, 4\right] \]

Limits

\[\lim_{x \overset{>}{\rightarrow- \frac{1}{2}} }f(x) = 3 \sqrt{2} \]
\[\lim_{x \overset{<}{\rightarrow4} }f(x) = 3 \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{1}{\sqrt{2 x + 1}} - \frac{1}{\sqrt{4 - x}} \]
\[f^{\,\prime}(x)=\frac{1}{\sqrt{2 x + 1}} - \frac{1}{\sqrt{4 - x}} \]
\[f^{\,\prime}(x)=\frac{\sqrt{4 - x} - \sqrt{2 x + 1}}{\sqrt{4 - x} \sqrt{2 x + 1}} \]

Integral

\[F(x) = - \frac{4 \left(4 - x\right)^{\frac{3}{2}}}{3} + \frac{\left(2 x + 1\right)^{\frac{3}{2}}}{3} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0043 seconds