NEW FUNCTION

Function Expression :

\[f(x)=\frac{x^2-2}{x-1} \]

Domain

\[\left]-\infty, 1\right[ \cup \left]1, \infty\right[ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = -\infty \]
\[\lim_{x \overset{<}{\rightarrow1} }f(x) = +\infty \]
\[\lim_{x \overset{>}{\rightarrow1} }f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = +\infty \]
\[ \]

Derivate

\[f^{\,\prime}(x)=\frac{2 x}{x - 1} - \frac{x^{2} - 2}{\left(x - 1\right)^{2}} \]
\[f^{\,\prime}(x)=\frac{- x^{2} + 2 x \left(x - 1\right) + 2}{\left(x - 1\right)^{2}} \]
\[ \]

Integral

\[F(x) = \frac{x^{2}}{2} + x - \log{\left(x - 1 \right)} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0050 seconds