NEW FUNCTION

Function Expression :

\[f(x)=(x+4 )e^{-\frac{1}{2}x} \]

Domain

\[]-\infty ;+\infty [ \]

Limits

\[\lim_{x \rightarrow-\infty}f(x) = -\infty \]
\[\lim_{x \rightarrow+\infty}f(x) = 0 \]
\[ \]

Derivate

\[f^{\,\prime}(x)=- \frac{\left(x + 4\right) e^{- \frac{x}{2}}}{2} + e^{\left(-1\right) 1 \cdot \frac{1}{2} x} \]
\[f^{\,\prime}(x)=\frac{\left(- x - 2\right) e^{- \frac{x}{2}}}{2} \]
\[ \]

Integral

\[F(x) = \left(- 2 x - 12\right) e^{- \frac{x}{2}} \]

Sign Table


Variation Table


Plot


Elapsed Time: 0.0051 seconds